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Abstract 
 

 

The speed of light postulate is closely examined from the perspective of two inertial 

reference frames―unprimed (‘stationary’) and primed (‘traveling’)―in relative motion, 

revealing that the speed of light postulate actually requires length contraction with 

respect to the unprimed reference frame, and length expansion with respect to the primed 

frame. It is shown that when symmetry is imposed on the inverse length transformation 

(i.e., to make it exhibit the same length contraction from the perspective of the primed 

frame), the common length contraction factor becomes nothing but the Lorentz 

contraction factor .  However, this would necessarily result in 1,   implying that the 

frames are being at rest with respect to each other, and thus refuting the special relativity 

predictions! When the coordinate’s transformation symmetry assumption is applied on the 

direct transformation resulting from the light speed postulate―which is shown 

incompatible with this assumption―, the Lorentz transformation and its inverse are 

erroneously obtained; it is shown to be restricted to certain coordinate relations, resulted 

in mathematical contradictions, and thus demonstrated to be unviable. 
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1. Introduction 

The Lorentz transformation, providing interrelation between the coordinates of two inertial reference 

frames in relative motion, forms the heart of the Special Relativity Theory. Einstein
[1]

 mainly derived the 

transformation on the basis of two principles: 1- the principle of relativity, stating that the laws of physics 

are the same in all inertial reference frames, and 2- the speed of light principle, postulating that the speed 

of light in vacuum is invariant with respect to all inertial frames of reference. 

Yet, another essential tool used in the Lorentz transformation derivation is that the direct and inverse 

transformations exhibit mutually symmetrical property; that is, the inverse transformation equation can be 

deduced from the direct one by swapping the coordinates and reversing the velocity sign. This is 

essentially the result of the isotropic property of space, combined with the first principle of the special 

relativity. This assumption is rather intuitive. However, in this paper, it is demonstrated that the speed of 

light principle deviates from this “law” of transformation symmetry. That is, the speed of light principle 

consequent direct transformation from the perspective of one frame is not symmetrical relative to the 

corresponding inverse transformation from the perspective of the other frame in relative translational 
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motion with respect to the first frame. It is shown that this fact has a fatal outcome in regard to the 

coherence of the special relativity, in agreement with the findings of an earlier study. 
[2]

  

2. Steps to Fatal Consequence of the Light Speed Postulate and the Transformation Symmetry  

Let ( , , , )K x y z t be a coordinate system attached to a reference frame K , and let  ( , , , )K x y z t      be 

another coordinate system attached to a reference frame K   in relative translational motion at a uniform 

velocity ,v with respect to .K   

A light ray is emitted when the two frames are overlying at the instant of time 0,t t   from a 

point at the coinciding frame origins, in the relative motion direction. According to the light speed 

principle, after period of time t  with respect to ,K corresponding to t  with respect to ,K   has elapsed, 

the light ray tip will have travelled a distance x ct  with respect to ,K x ct  with respect to ,K  where 

c  is the speed of light in empty space. 

Step 1 

Since, according to the special relativity’s second postulate, 

the speed of light is the same with respect to both frames, the 

light ray trajectory drawn independently in K and K   would 

appear as shown in Fig. 1 in solid lines. However, the light ray 

tip point L is actually perceived as point L (since L and 'L  

represent the same event in each frame) with respect to .K  

Hence, the distance x  must be contracted with respect to K  

in order for point L to coincide with point .L  Suppose the 

distance x is contracted by a factor of (1/ 1),  as shown in 

Fig. 1a with the gray dashed line,  the following expression is 

inferred from Fig.1a, relative to .K  

 
1

.

1

x ct

vx vt ct vt

c

   
 



             (1)  

where vt is the distance travelled by K with respect to K  

during the travel time .t   

Step 2 

On the other hand, the light ray tip point L is actually 

perceived as point ,L with respect to K  (since L and 'L  represent the same event in each frame). 

Hence, the distance x  must then be expanded with respect to K   in order for point L to coincide with 

point .L  Suppose the distance x  is expanded by the  factor of 1,   as shown in Fig. 1b with the gray 

dashed line. Hence, the following expression is inferred from Fig.1b, relative to .K   

x   

Fig.1 Light ray tip point path from the 

perspective of K (a), and K  (b). 
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Step 3 

Equations (1) and  (2) lead to 
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

         (3) 

Step 4 

If we now impose that the length in K must―by the “law” of symmetry―be also contracted with respect 

to K   by the factor (1/ )  (i.e., 1/  ), then equation (3) reduces to 

 
2

2

1
,

1
v

c

 



          (4) 

which is the Lorentz contraction factor, in accordance with to the special relativity predictions. 

Step 5 

Consequently, comparing equations (1) and (4), the symmetry requirement results in 
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      (5)  

Or, the symmetry criteria 1/   leads to— from Eqs. (1) and (2) 

 1 1 ,  or 0,
v v

v
c c

      

implying the reference frame must be at rest with respect to each other in order to satisfy the light speed 

principle and the transformation symmetry. It follows that the special relativity is deemed to be refuted. 
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3. Coordinate Transformation and Verification of Findings 

Using Fig.1a, the following transformation is deduced with respect to .K  

 
,

( ).

x
x vt

x x vt






 

  

         (6) 

Similarly, Fig.1b leads to the following transformation with respect to K    

 

,

1
( ).

x x vt

x x vt





  

  
        (7) 

It should be noted that the spatial transformation equations (6) and (7) deduced from the speed of 

light invariance are in conformance with the Galilean transformation for the limit .v c   

Equations (6) and (7) lead to 

 x x vt             (8) 

 .x x vt      (9) 

Dividing equation (8) by equation (9) we obtain 
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      (10) 

verifying equation  (3). 

Now, if equations (6) and (7) were to be symmetrical, in accordance with the special relativity 

assumption of transformation symmetry, then  

 
1

;


      (11) 
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leading to (from equation (10)) 

 
2

2

1
,

1
v

c

 



  (12) 

and equations (6) and (7) become the spatial Lorentz transformation and its inverse. However, this would 

necessarily lead to (from equations (1), (2), and (11)) 

 0,v   

thus refuting the special relativity predictions. 

4.  The Special Relativity Blunder 

Using the isotropic property of space, and the Special Relativity first postulate stating that the laws of 

physics are the same in all inertial reference frames, the coordinate transformation with respect to the 

unprimed frame ,K  given by equation (6)―obtained from the constancy of the speed of light 

postulate―would represent the inverse transformation (i.e., with respect to the primed frame K  ), had we 

swapped in the equation the unprimed and the primed coordinates, and reverse the sign of the relative 

velocity (as K is traveling in the opposite direction with respect to K  ). This will lead to the following 

transformation equation and its inverse.   

 ( );x x vt     (13)  

 ( ).x x vt      (14) 

Obviously, equation (14) is inconsistent with the speed of light principle, as it is not in line with equation 

(7) required by this principle. 

Now, dividing both sides of equations (13) and (14) by c , the speed of light, the following time 

transformation equations are obtained. 

 1 ,
v

t t
c


 

   
 

  (15) 

 1 .
v

t t
c


 
  
 

  (16) 

Substituting equation (15) into equation (16) leads after simple simplification to 

 
2 

2

1
 .

1
v

c

 



  (17) 
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Replacing equation (16) in equation (13), and equation (15) in equation (14), returning, respectively 
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requiring x ct   and ,x ct to yield the transformation equations (14) and (13), respectively. When this 

requirement (i.e., x ct  and x ct  ) is applied to equations (15) and (16), the following equations are 

returned. 

 
2
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vx

t t
c


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 (18) 

 
2
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t t
c
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It follows that, equations (13), (14), (18), and (19), which are nothing but the Lorentz transformation 

equations, are restricted to x ct  and ,x ct  which leads to various contradictions.  

In fact, when 0t  , Lorentz transformation (18) leads to 
2/t vx c . But, as shown above, x ct  in 

equation (18), yielding the contradiction 
2/t vct c , or v c .  

Similarly, Lorentz transformation (19) can lead to a similar contradiction for 0t   (i.e. v c  ). 

Furthermore, substituting equation (18) into equation (19), returns   

 
2 2

,
vx vx

t t
c c

 
  

    
  

  (20) 

which can be simplified to 

  2 2

2
1  .

vx x
t

c x


  

 
  

 
  (21) 

Since, as shown earlier, equations (18) and (19) require ;  x ct x ct   , then equation (21) can be 

written as  
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  2 2

2
1 .

vx t
t

c t


 

 
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 
  (22) 

Now, for time     , the transformed  -coordinate with respect to   would be        ⁄ , according to 

equation (18). Consequently, for     , equation (22) would reduce to  

 
 2 21 ,t t  

  

yielding the contradiction, 

 
2 21  ,   or    0 1 .   

  

It follows that the conversion of the time coordinate t 0   to 
2/t vx c , for  0x  , by Lorentz 

transformation equation (18), is proved to be invalid, since it leads to a contradiction when used in 

equation (22), resulting from the Lorentz transformation equations for 0t   (i.e. beyond the initial 

overlaid-frames instant satisfying 0t   for  ' 0t  ). 

A similar contradiction is obtained by substituting equation (19) into equation (18), and applying equation 

(19) for the conversion 0t  ; 
2/t vx c   . 

In addition, substituting equation (13) into equation (14), yields 

 
   ;x x vt vt    

  

 
   2 1  ;x v t t     

  

  2 1  .
t

x vt
t

  
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   
 

  (23) 

Since equations (13) and (14)―along with equations (18) and (19)―require 
;  x ct x ct  

, equation 

(23) can be written as 

  2 1  .
x

x vt
x

  
 

   
 

 (24) 

Now, for 0x  , the transformed x -coordinate with respect to K  would be   ,x vt  according to 

equation (13). Consequently, for  0x  , equation (24) would reduce to  

 
 2 21 ,x x  

 

 
2 21 ,   or    0 1.     

 



8 
 

©Radwan M. Kassir  2014 

It follows that the conversion of the space coordinate 0x   of K   origin to  x vt , at time 0t  , with 

respect to K  by Lorentz transformation equation, is invalid, since it leads to a contradiction when used in 

equation (24), resulting from Lorentz transformation equations, for   0x   (i.e. beyond the initial 

overlaid-frames position satisfying 0x   for 0x  ). 

A similar contradiction would follow upon substituting equation (14) into equation (13), and applying 

equation (14) for the conversion 0;  .x x vt     

5. Conclusions 

Considering two internal reference frames―unprimed and primed―in relative translational motion, the 

direct coordinate conversion factor and its inverse were easily deduced from the constancy of the speed of 

light principle, using simple diagrams for a light ray travel path from the perspective of each of the two 

frames. The direct length conversion factor was found to be in agreement with the corresponding special 

relativity prediction. However, the deduced inverse conversion factor was not symmetrical with respect to 

the direct length conversion that required that the space in the primed frame be contracted with respect to 

that of the unprimed frame, while the inverse length conversion factor showed the inverse relation (i.e., 

the length in the unprimed frame was expanded with respect to the primed frame). It followed that, to 

achieve symmetry (i.e., length be mutually contracted with respect to both frames and by the same factor), 

the constancy of the speed of light principle required that the two frames be at rest with respect to each 

other, thus invalidating the special relativity predictions. Moreover, further analysis of the Lorentz 

transformation, following from the coordinate transformation symmetry assumption, showed fatal 

mathematical contradictions leading to its refutation. 
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